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I t  is shown that weak harmonic waves can propagate upstream in a supersonic 
stream along a plane wall over distances that are very large in comparison with 
the boundary-layer thickness. These waves are characterized by small reduced 
frequencies, large wavelengths and small phase velocities. Results are presented 
for the flow along a single plane wall and also for the flow between two plane 
parallel plates (channel flow). 

The progressive-wave solutions are found by asymptotic expansions for small 
disturbances, large Reynolds numbers of the basic flow, and small reduced 
frequencies of the unsteady disturbances. It turns out that, as in the corre- 
sponding steady theory, four flow regions have to be distinguished: a middle 
layer which embraces most of the boundary layer; an inner layer near the wall; 
the outer flow field; and a transition layer between the middle layer and the 
outer layer. A quasi-steady treatment of the middle, transitional and outer 
layers is appropriate. Unsteady effects originate in the inner layer. 

The relative importance of viscosity and unsteady effects with regard to the 
waves is characterized by a dimensionless parameter N which is the product of 
certain powers of the reduced frequency and the Reynolds number. For N -+ 00 

and a single wall, Lighthill’s steady theory of upstream influence in supersonic 
boundary layers is recovered as a limiting case of the present theory. 

1. Introduction 
We shall be concerned in this paper with small disturbances propagating 

upstream in a gas that flows along a plane wall a t  a supersonic speed. Although 
the inviscid supersonic flow is governed by hyperbolic equations and the thin 
boundary layer near the wall approximately obeys parabolic equations it is 
well known from many experiments that small disturbances of the basic flow do 
have a noticeable upstream influence. 

As far as steady disturbances are concerned, theories which are able to predict 
correctly the experimental findings were first developed by Miiller (1953, 1955) 
and by Lighthill (1953). Considerable advances have been made since then in 
the steady theory. 

t Present address : Institut fur Gasdynamik und Thermodynamik, Technische Hoch- 
schule Wien, Karlsplatz, A- 1040 Wien, Austria. 
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FIGURE 1.  Basic (undisturbed) shear flow at a plane wall. 

In  the present paper, however, we are concerned with unsteady phenomena. 
Following Lighthill's approach, Dore ( 1967) determined the upstream influence 
of a weak shock that moves with a small uniform velocity parallel to the wall. 
The main result is that the upstream influence is greater than or less than that 
for the steady case according as the shock velocity is in or against the direction 
of the main stream. Dore considers his work to be a first step towards an under- 
standing of the unsteady interaction effects which are of great practical im- 
portance when the shock wave oscillates about some mean position. 

In what follows, a theory for the upstream propagation of unsteady dis- 
turbances with particular consideration of harmonic waves will be given. For 
a single wall, Lighthill's theory will be recovered as a certain limiting case of the 
present., more general theory. In  addition the problem of disturbances propa- 
gating upstream in a channel with plane parallel walls will be considered. The 
presence of the second wall causes some peculiarities with respect to unsteady 
disturbances as well as to steady ones. 

The basic (undisturbed) flow is considered to be a plane steady shear flow 
along a plane wall, with the free-stream velocity 0' and the velocity profile UU 
assumed to beindependent of the tangential co-ordinate 2 (figure 1). This approxi- 
mation rests on the fact that for very large Reynolds numbers the actual 
boundary-layer flow varies only slowly with increasing 2. 

At a certain distance from the wall the velocity of the shear flow is equal to 
the critical sound velocity c*.  Hence the boundary-layer-like shear flow is divided 
by a sonic line into two distinct regions (figure 1): above the sonic line the flow 
is supersonic ( M  > l), below the sonic line the flow is subsonic ( M  < 1). In  
t'he subsonic region the upstream propagation of small disturbances is possible, 
at  least in principle. However, a perturbation of the subsonic flow will cause 
also a perturbation of the supersonic flow above. Hence a wave propagating 
upstream in the subsonic region loses energy and is damped accordingly. The 
question is now whether unsteady disturbances can propagate far upstream 
(far in comparison with the boundary-layer thickness) before they are virtually 
extinguished owing to the damping. 
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The answer will of course depend on the frequency Q of the disturbances, or 
more specifically, on a 'reduced ' (dimensionless) frequency B defined by 

i2 = ws/u,  (1.1) 

s = (dG/dy")&, (1.2) 

where for later convenience the ' boundary-layer thickness ' 6 is defined by 

cf. figure 1. 
It might be tempting to think that an ordinary sound wave, when emitted 

from a point in the subsonic layer, could be transmitted quite far along a ray 
pointing upstream. However, that the sound wave has to propagate in a highly 
rotational shear flow has to be taken into account. The concept of a ray applies 
if the wavelength of the sound wave is very small in comparison with the boundary- 
layer thickness 6, i.e. for large values of the reduced frequency Q. But it is known 
from geometric acoustics that the ray curvature is of the same order of magnitude 
as the vorticity of the shear flow divided by the local sound velocity (Landau & 
Lifshitz 1959). Hence in our problem the radius of curvature of the ray will be 
of the order of the boundary-layer thickness. Therefore an acoustic disturbance 
propagating along a ray that initially points upstream will have already left the 
subsonic region after a path length of the order of the boundary-layer thickness. 
Since in the supersonic region the acoustic disturbance will, of course, drift 
downstream, the distance over which disturbances of large reduced frequencies 
are felt upstream is of the order of the boundary-layer thickness, i.e. relatively 
small. 

Large reduced frequencies are therefore ruled out from our considerations, and 
in what follows we shall focus our attention on small reduced frequencies. Since 
in the latter case the characteristic length of the disturbances (the wavelength) is 
large in comparison with the characteristic length of the basic shear flow (the 
boundary-layer thickness), geometric acoustics do not apply. Hence it is not 
unlikely that unsteady disturbances of small reduced frequencies (unlike those 
of large reduced frequencies) can propagate far upstream. The investigation 
presented in this paper will show that this is in fact the case. 

Apart from this consideration we should mention that the case of small 
reduced frequencies C2 is also the most interesting one from a practical point of 
view since, according to (1.1)) the actual frequency w is to be multiplied by 
6/U,  which is a very small time for typical supersonic boundary layers. 

It is important to note that very small reduced frequencies do not necessarily 
lead to quasi-steady behaviour of the disturbances. Near the wall the velocity of 
the steady shear flow is very small and the unsteady terms can be essential 
there no matter how small a. 

As far as viscosity effects are concerned it will be advantageous to use the 
Reynolds number 

which is based on the boundary-layer thickness 6 and on the wall values pw 
and p, of the density and viscosity. We shall of course assume the Reynolds 
number to be large. The investigation will, strictly speaking, be restricted to 

Re = ~UP,lP,, (1.3) 

30-2 
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laminar flow. However, the results can also be employed for a turbulent boundary 
layer (with a laminar sublayer) if we accept the hypothesis (Inger & Williams 
1972; McClure 1962) that there is no correlation between the turbulent fluctua- 
tions and the unsteady disturbances whose upstream propagation is to be studied. 
This permits us to treat the turbulent shear flow as a quasi-laminar mean flow 
controlled by an appropriate eddy viscosity. 

2. Basic equations 
Dimensionless variables are now introduced. The Cartesian co-ordinates x and 

y are based on the boundary-layer thickness 6, which is defined in (1.2), i.e. 
IL’ = 218 and y = ij/8. The velocity components u and v (tangential and normal 
to the wall, respectively) are based on the free-stream velocity U ,  and the time t 
on a characteristic time scale u-l of the unsteady disturbances, w being the 
frequency in the case of periodic disturbances. The pressure p is made dimension- 
less by pw U2, where pw is the value of the density of the basic shear flow a t  the 
wall. All other thermodynamic quantities such as the density p, temperature T, 
etc., as well as the viscosity p, second viscosity pf and heat conductivity A, are 
based on their respective wall values (subscript w). 

Then for plane laminar flow of a perfect gas the conservation equations, 
written in dimensionless variables, are the equation of continuity 

1Dp au av -- +-+- = 0,  
p ~ t  ax ay 

(2.1) 

the Navier-Stokes equations 

and the energy equation 

Here DIDt indicates the substantial derivative, i.e. 

a a a  
- Q-+u-+v- 

D 
Dt at ax ay’ 
_ -  

with R given in (1.1). Pr is the constant Prandtl number, y the ratio of the 
specific heats at  constant pressure and constant volume, M,a Mach number which 
is defined as the ratio of the free-stream velocity and the wall value of the sound 
velocity, and 0 is the dissipation; 
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The set of equations is to be completed by the equation of state of a perfect gas 
and by relations describing the temperature dependence of the viscosity and 
heat conductivity, 

The boundary conditions at  the wall, again in dimensionless notation, are 

u = v = O ,  T = l  at y = O .  (2.7) 

Further boundary conditions, for instance those which follow from relations of 
symmetry, will be introduced when needed. 

3. Asymptotic expansions 
According to the arguments given in the introduction we shall seek asymptotic 

solutions for small disturbances, small reduced frequencies and large Reynolds 
numbers, i.e. for 

where the perturbation parameter E is such that it characterizes the order of 
magnitude of the tangential velocity disturbances relative to the free-stream 
velocity U .  The Mach number and Prandtl number are assumed to be O(1). 
Here and in what follows the order symbol, say Q = O(E), is used in the restricted 
sense indicating that SZ/E  -+ C as E + 0, where C is not only bounded but also 
non-zero. 

As the reduced frequency Q goes to zero, the wavelength of the disturbances 
is supposed to go to infinity. This means that the wavenumber (or, in the case of 
a complex wavenumber, its real part) is supposed to go to zero as the reduced 
frequency s1 goes to zero. It might be tempting to assume that the wavenumber 
is of the same order of magnitude as Q, since such an assumption would yield 
a propagation speed of order one, i.e. of the order of the sound speed when 
expressed in dimensional form. However, this is a wrong approach which does 
not lead to upstream-propagating waves. 

We therefore introduce a parameter K such that the real part of the wave- 
number is O(K) but we do not commit ourselves a priori to a fixed order of 
magnitude for K in terms of Q. We only require K to go more slowly to zero 
than a, i.e. 

since the other two possibilities (Q/K = O( 1) and Q / I .  -+ 00) do not lead to 
upstream-propagating waves and are therefore ruled out. 

According to (3.1) and (3.2) we are concerned with constructing asymptotic 
expansions as three independent parameters ( E ,  i2 and Re-1 or 8, K and Re-I) 
simultaneously go to zero. Under such circumstances it is important to fix the 
relative orders of magnitude of the parameters. As far as the magnitude of E is 
concerned, we shall mainly consider the case 

E ,  9, Re-l+ 0, (3.11 

K - t O ,  Q / K + O  as Q + O ,  (3.2) 

s / K +  0 as K - t  0. (3.3) 

This requires disturbance velocities that are even smaller than the small wave- 
number. All perturbation equations will be linear in this case. We shall also 
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FIGURE 2. Division of the flow field with respect to the asymptotic expansions. Middle 
layer, shearing essential; inner layer, basic velocity small ; outer layer, shearing unessential ; 
transition layer, transition between outer and middle layer. 

briefly investigate the more general case e/K = O( l),  which imposes weaker re- 
strictions on the magnitude of the flow perturbations. 

On the other hand, the relative order of magnitude of SZ and Rc-l will be 
established by defining a viscosity-frequency parameter N :  

N = Re-l. (3.4) 

It will be seen that N characterizes the relative importance of viscosity effects 
and unsteady phenomena in the perturbed flow. With regard to the magnitude 
of hT we shall consider all three possible cases, namely N + 0, AT = O(1) and 
*v + 00. 

3.1. The quasi-steady region of theJlow Jield 

The unsteady terms in the conservation equations (2.2)-(2.4) tend to zero as 
Q -+ 0. The convective terms, however, are O(i) ,  except in a very thin inner layer 
near the wall, where U -f 0 as y --f 0 (see figure 2).  As far as the first-order ex- 
pansion in terms of Q is concerned, the flow outside the inner layer, i.e. almost 
the whole flow field, can therefore be treated as if i t  were steady. The source of 
the unsteady behaviour of the flow is the inner layer, which will be treated in 3 3.2, 

The length scale of the tangential variations of the flow disturbances is given 
by the wavelength, which is comparable with K-I. Hence we introduce a stretched 
tangential co-ordinate 

and all expansions are to be understood to be with X fixed. 
The basic shear flow is given by u = E(y), v = 0, p = p ,  = constant, p = p ( y ) ,  

T = p(y) etc., where all quantities except the pressure depend on the normal 
distance y from the wall. Primes on shear-flow quantities will denote differentia- 
tion with respect to y. 

x = K X  (3.5) 
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Well-known results of the steady theory (cf., for instance, Lighthill 1953; 
Stewartson 1964) indicate that the velocity components and the pressure in the 
middle layer (which is essentially the shear layer with the inner layer excluded, 
cf. figure 2) can be written as 

u = t ( y )+c t ’ ( y )  ( N $ -  l ) * [ F ( t , X ) - G ( t , X ) ] ,  

= - E K Z ( ~ )  ( N z  - I)* [J”(t, X )  - Gx(t ,  X ) ] ,  

P = P m  - c%x$w, X )  + G,(k X)l, 

(3.6) 

(3.7) 

(3.8) 

where the functions F and G are related to the velocity perturbation potential q5 
far from the wall (in the outer, non-rotational flow) by 

(3.9) 

(3.10) 

We note that, with respect to the boundary layer, F(t,  6 )  represents outgoing 
waves, whereas G(t, q) represents incoming waves. Depending on the particular 
problem, either G(t ,v)  or a relation between F(t ,  E )  and G(t ,  q) is prescribed. 

More details of the expansions in the quasi-steady regions of the flow field 
are given in the appendix. Here we only note that matching of all perturbation 
quantities requires the insertion of a transitional layer between the middle and 
the outer layers (see figure 2). 

3.2. The inner layer 

In order to find a solution which is valid near the wall we define an inner co- 
ordinate 

yi = K-ly. (3.11) 

We next introduce the asymptotic expansions 

(3.12) 

with yi = O(1) kept fixed, and expand the basic shear flow near the wall as 
li -+ 0 according to 

(3.13) I Z(Kyi)  = Ky,%’(O) + ... = Kyi+ ..., 
p(Kyi) = 1 +KYi/iP’(O)+..., 

et,c. Equations (2-1)-(2.3) then yield 

au,lax + avipyi = 0, (3.14) 

apilayi = o. (3.16) 
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If the disturbances are small such that e/K -+ 0 equation (3.15) reduces to the 
linear equation 

(3.17) 

The relation e/K + 0 has already been postulated in (3.3).  However, we may 
conclude from an inspection of (3.15) that in the more general case e/K = O(1) 
the orders of magnitude of the flow quantities will not be changed. As far as 
orders of magnitude are concerned the results to be presented will therefore 
remain valid even if e/K = O(1). The functional form of the solutions of (3.17) 
(in particular the harmonic wave soIutions) and the numerical results will, of 
course, be valid only if e/K + 0. 

The form of (3.17) is governed by the orders of magnitude of SZ/K2 and l/K4 Re. 
We have to note, however, that only two of the three parameters S Z ,  K and Re 
can be chosen independently. The third one is determined by the solution of the 
problem. Therefore all cases possible in principle have to be pursued. 

The two possibilities Q / K 2  + 00 or 1/K4Re -+ 00 can immediately be ruled 
out because in either of these cases only those terms in (3.17) that have been 
entirely dropped in the middle layer would be retained. Hence matching between 
the inner and middle layers would be impossible. 

We next consider the case Q / X 2  = O( 1) or, without loss ofgenerality, Q/K2 = 1. 
The factor 1/K4 Re can then be replaced by l /Q2 Re, which has to be O( 1 )  or 
smaller. 

Finally we study the case Q/K2 -+ 0, therefore dropping the unsteady term. 
Since yi = 0 and vi = 0 a t  the wall there must be a sublayer where the viscous 
term becomes important. It is therefore necessary to choose the co-ordinate 
stretching according to (3.11) such that the viscous term is retained. K4Re = I,  
i.e. K = Re-), is such a choice. We also note that l /R2  Re -f co in this case and 
only in this case. 

Comparing the various cases we see that they are uniquely distinguished by 
the order of magnitude of the parameter N = l /Q2 Re, which has already been 
introduced in (3.4). Taking now the reduced frequency Q and the Reynolds 
number Re as the basic parameters we have to specify the parameter K ,  which 
characterizes the order of magnitude of the wavenumber, as follows: 

if N + O  or N =  O(i) ,  

Re-4 if N + m .  

Accordingly (3.17) can be written as 

where 

I 1 if N - + O  or N = O ( l ) ,  

J-={ 0 if N - t c o .  

(3.18) 

(3.19) 

(3.20) 

The system of equations now consists of the continuity equation (3.14), the 
normal momentum equation (3.16) and the tangential momentum equation 
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Corn- Pressure 
Un- pressi- gradient 

Viscous steady bility normal 
Thickness effects effects effects to wall 

Outer layer -+a N O  No Yes Yes 
Transition layer O(6)  No No No No 
Middle layer O(6) No No No No 

0(6Q*) No Yes No No 
~ n m r  ~E",,,, o(6Qt) = O(8Re-t) Yes Yes No No 

l N + m  O(6Re-1) Yes No No No layer 

TABLE 1. Main properties of the four layers of the disturbed flow field 

(3 .19) .  They contain only three unknown perturbation quantities, i.e. ui, vi and 
pi. The energy equation is uncoupled and can be used to determine the second 
thermodynamic perturbation quantity, say pi. Inspection of the system shows 
that the inner layer is quasi-incompressible with vanishing normal pressure 
gradient. Further characterization of the layer depends on the parameter N .  

If N -+ 00 the flow disturbances in the inner layer may be considered as quasi- 
steady but viscous; if N -+ 0 unsteady effects are essential but viscous effects 
are not; if N = O(1)  unsteady effects as well as viscosity play an important 
role in the disturbed flow. 

Sfter elimination ofp, and vi from (3.14), (3.16) and (3 .19)  the following third- 
order equation for u1 is obtained: 

(3 .21)  

Boundary conditions are ui = 0 and vi = 0 at the wall. Using (3 .19)  we write 

(ui)yd=o = 0, (3 .22)  

(a2ui/ayf)yi,o = - (p,/Nj) [Fxx(t, X )  + Gxx( t ,  X ) ]  if N + 0 (3.23a) 

and (au,/at),,,, = pm[Fxx(t, X )  + Gxx(t ,  X ) ]  if N = 0. (3 .23b)  

Further boundary conditions follow from the requirement that all flow quantities 
match in an overlap domain between the inner layer and the adjoining middle 
layer. Comparison of (3.12) with (3 .6)  and (3.7) yields the condition 

(au,/ax),,, = (a: - [Fx(t, X) - GX@,  X)l. (3 .24)  

Furtliermore we must, of course, require that ui be bounded as y, -+ co. 
To conclude the section the main properties of the four layers are summarized 

in table 1. Compressibility effects and pressure gradients normal to the wall are 
seen to be important in the outer layer only, while unsteady effects and viscosity 
control the flow disturbances in the inner layer. It is this latter layer which 
allows unsteady disturbances to propagate far upstream. The middle layer as 
well as the transition layer, i.e. almost the whole boundary-layer region, act 
only as kind of a buffer between the inner and outer layers. This is why the shapes 
of the velocity and temperature profiles in the boundary layer do not influence 
the result. 
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4. Harmonic waves at a single wall 
Equation (3 .21 )  permits solutions in the form of progressive harmonic waves: 

ui = a(yi) ei(t+kX), (4 .1 )  

where k is the complex wavenumber with respect to the stretched tangential 
co-ordinate X. According to (3 .6 )  the wavenumber with respect to the original 
co-ordinate x (based on the boundary-layer thickness) is therefore equal to Kk, 
with K -+ 0 as the reduced frequency C2 --f 0. Let us also recall that the time t 
is based on the reciprocal of the frequency. 

Thus we may rewrite ( 4 . 1 )  as 

ui = a(yi) ePz eW+2nz/h) ( 4 4  

/3 = -KIm(k), h = 2n/[KRe(k)]. (4 .3 )  

where the damping exponent ,8 and the wavelength h are defined by the relations 

Note that for upstream-propagating damped waves, which are the object of 
our interest, h and ,8 have to be positive; hence Re (k) > 0 and I m  (k) < 0. 

4.1. Xolutions for Jinite values of the viscosity-frequency parameter N 

We first consider the case of finite N ,  i.e. j = 1 .  Substituting for ui in (3 .21)  
according to (4.1) yields the following ordinary differential equation for the 
amplitude function a(yJ : 

Na"' - i( 1 + Icyi) a' = 0. (4 .4)  

The general solution of this equation can be expressed in terms of the Airy 
functions Ai and Bi (cf. Abramowitz & Stegun 1965, p. 446) .  Eliminating soh- 
tions that are unbounded as yi + co and using the boundary condition (3 .22)  
we obtain 

( 4 . 5 )  

where C is an arbitrary complex constant (amplitude) and 

= z1( 1 +Icy,), (4 .6)  

lzll = INk2I-+, arg(zl) = Qn-$arg(k) .  (4.7) 

with the complex constant x1 uniquely defined by 

In t,he boundary conditions (3 .24)  and (3 .23a)  we now focus our attention on 
a single wall with no waves propagating towards the wall from outside the 
boundary layer. Hence G ( t , X )  = 0 and (3 .24)  and (3 .23a)  can be combined to 
yield t.he boundary condition 

where, according to the perfect-gas relation, pm may be replaced by Tz l ,  i.e. the 
ratio of the wall temperature and the free-stream temperature. 
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I 

FIGURE 3. Path of integration in the complex plane for deducing (4.11) from (4.10). 

Applying (4.8) to the solution represented by (4.1) and (4.3) we find that the 
wavenumber k has to satisfy the relation 

NT,(M2, - I)-& - Z ( k )  = 0, (4.9) 

with (4.10) 

The integral in (4.10) can be expressed in a more convenient form by taking the 
path of integration indicated by the solid line in figure 3 and using the known 
asymptotic properties of the Airy functions. The result is 

(4.11) 

Equation (4.9), together with (4.10) or (4.11), represents a dispersion relation for 
the harmonic waves propagating upstream. By solving (4.9), k is obtained in 
terms of the viscosity-frequency parameter N ,  the free-stream temperature T, 
(based on the wall temperature) and the free-stream Mach number N,. 

The reduced frequency SZ does not appear explicitly in (4.9) but nevertheless 
the result depends on the frequency in a twofold way. On the one hand the 
parameter N contains SZ as can be seen from (3.4). On the other hand, the wave- 
number with respect to the unstretched co-ordinate x is given by Kk, where K 
is also related to SZ, according to (3.18). 

Numerical results for k will be presented in 6. Anticipating, however, that the 
real and imaginary parts of k are O( 1) if N = O( l), a result which is quite obvious 
from (4.9), we can already draw some remarkable conclusions concerning orders 
of magnitudes. 

(i) The solution (4.1) represents upstream-propagating waves with very small 
reduced frequencies ( S Z  + 0). 

(ii) The damping exponent /l is proportional to K ,  i.e. comparable with SZs. 
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N + O  N = O(1) N + w  

Damping exporielit, p O(11:) ~(na) = O(Re-$1 O(Re-*)f 
Wavelength, h O(C2-!) o ( R - ~ )  = o(Re4) 0 (Re*N*) 
Phase velocity o(nt) O ( Q ~ )  = o(ne-4) 0 ( R e - h r t )  

t Agrees with Lighthill’s (1953) and Miiller’s (1953, 1055) results. 

TABLE 2. Orders of magnitude of damping exponent p, wavelength h and phase velocity 
for waves propagating upstream in the supersonic boundary layer a t  a plane wall. Small 
reduced frequencies [;2 and large Reynolds numbers Re.  (Lengths based on boundary-layer 
thickness, phase velocity on the sound velocity.) 

This means that the waves under consideration are only weakly damped over 
path lengths of the order of the boundary-layer thickness. 

(iii) The wavelength is comparable with SZ-2, i.e. very large, when scaled with 
the boundary-layer thickness. 

(iv) The phase velocity (as well as the group velocity) is comparable with Q4 
when scaled with the free-stream velocity, i.e. the phase velocity (as well as 
the group velocity) is very small in comparison with the sound velocity. 

4.2. The case of weak viscosity effects (Ar -+ 0 )  

Expanding the wavenumber k for small viscosity-frequency parameters, AT + 0, 
according to the asymptotic series 

k = k@)+NtW)+ ... (for N -+ o) ,  (4.12) 

we obtain from (4.9) and (4.10) 

(4.13) 

(4.14) 

The first-order result (4.13) can also be obtained by direct solution of (3.21) 
with N = 0 (inviscid waves). The sign of the second-order term (4.14) indicates 
that owing to weak viscosity effects the damping of the waves as well as their 
wavelength is increased relative to the inviscid limit. 

4.3. The quasi-stead9 limit (N -+ co) 
The limiting case of very large values of N (i.e. viscosity effects dominant 
relative to unsteady effects) can be investigated either by studying the behaviour 
of the solution obtained in § 4.1 as N -+ 00, or by solving (3.21) f o r j  = 0. Both 
methods lead to the same result if we take into account the different magnitude 
of the stretching factor K i n  the two cases, cf. equation (3.18). 

Irrespective of which description we prefer, the result can be written as 

K k = - P i +  ... (forN-tco), (4.16) 

with P = (3c2 T,)$ (H: - 1)s Re-f, (4.16) 

where c2 = - Ai‘ (0)  = 0.2588.. . . Recall that Kk is the wavenumber with respect 
to  the unstretched co-ordinate x, and note that the real part of Klc vanishes in 
the limit N --f 00. Hence, in agreement with what follows from (3.21) for j = 0,  
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FIGURE 4. Upstream wave propagation in a plano-walled Supersonic channel. 

the limit N --f co leads to quasi-steady behaviour of the upstream-propagating 
disturbances. Comparison of (4.16) with the result obtained by Lighthill (1953) 
(cf. also Stewartson 1964) for the logarithmic decay of steady disturbances of 
a supersonic boundary-layer flow shows complete agreement, 

The orders of magnitude of the damping exponent p, the wavelength h and 
the phase velocity of the upstream-propagating waves at  a single wall are sum- 
marized in table 2. 

5. Harmonic waves in a channel 
So far we have looked for solutions for waves propagating upstream in a super- 

sonic boundary layer a t  a single wall, with the flowing gas extending to infinity 
in the direction normal to the wall. We shall now turn our attention to the 
laterally bounded problem of supersonic flow between two plane parallel plates 
(see figure 4). 

As far as upstream-propagating waves are concerned there is the following 
essential difference between the unbounded and the bounded problems. In  the 
unbounded case the disturbances that leave the boundary layer are transferred 
along characteristics downstream to infinity. In  the bounded case, however, 
the disturbances leaving the boundary layer and propagating downstream 
eventually reach the boundary layer at the opposite wall. After some interaction 
with the boundary layer, the disturbances are reflected towards the wall where 
they came from. This mechanism provides a possibility of conserving, in the 
absence of viscosity, the energy of upstream-propagating waves. Hence we shall 
find undamped waves in the bounded problem if viscosity, as far as the dis- 
turbances are concerned, is neglected ( N  = 0 ) ,  whereas for the single wall the 
upstream-propagating waves are damped even in the inviscid case as we have 
already seen in $4.2. 

5.1. Solutions for arbitrary values of the viscosity-frequency parameter 8 
Progressive harmonic waves can be found as solutions of the laterally bounded 
problem in the same manner as has been done for the single wall in 8 4. Equations 
(4.1)-(4.7) remain valid without any changes. Thus the solution is formally the 
same here as it was for the single wall, but the dispersion relation which de- 
termines the wavenumber k is different. 
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We seek solutions that are symmetrical about the centre-line of the channel. 
Hence the normal velocity perturbation in the outer region has to vanish a t  the 
centre-line, i.e. 

where b is the half-width of the channel in the unstretched co-ordinate system 
(x, y), i.e. b is made dimensionless by the boundary-layer thickness 6, whereas 
b, = Kb can be considered as a reduced half-width which is based on a length of 
the order of the wavelength. With (3.9) the condition (5.1) can be written as 
a relation between the wave functions P(t7 5) and G(t ,  q )  as follows: 

4, = 0 a t  y = b = bo/K, (5.') 

q(t, X - bo(M2, - 1)f) = G,(t, X +- b,(M: - 1)f). (5 .2 )  

Now introducing harmonic waves as in (4.1) we obtain from the boundary 
conditions (3.24) and ( 3 . 2 3 ~ ~ )  together with the symmetry condition (5 .2)  the 
following dispersion relation for k: 

NT,(M2,  - 1) i  - Z ( k )  
= exp [ - 2b0(M2, - I)$ ki]. 

NT,(M% - 1)t + Z(lC) 
(5.3) 

Here Z ( k )  is, as before, given by (4.10) or alternatively by (4.11). 
Numerical results obtained by evaluation of (5.3) will be given in 9 6 .  
If b, -+ co equation (5.3) reduces, as it should, to  equation (4.9) for the single 

wall, provided that the imaginary part of I% is finite and negative. 

5.2. The inviscid case ( N  = 0 )  and the limit N + 0 

For small values of the viscosity-frequency parameter N we expand the wave- 
number k as 

Introducing this expansion into the dispersion relation (5.3) and assuming b, 
to be O( 1) we obtain for the first- and second-order terms the equations 

E = k ( O ) + N w ) +  ... ( N  -+ 0). (5.4) 

(5.5) 

w) = (1 - i) 2 - ~ , k ( 0 ) 3 { 2 ~ ,  w) - ~,[T;(M: - 1) + k(~43-1 .  (5.6) 

Equation (5.5) cannot be explicitly solved for kco), but it can be seen that only 
a real k@) can satisfy the equation. Furthermore, for upstream-propagating 
waves E ( O )  has to be positive. Using this knowledge about k(O) equation (5.5) can 
be solved for b, to yield 

b, = k(0)-1(M~-l)-?E(arctan[k(o)"~1(M~-1)-8]+~n~} (n = 0,1,2, ...). (6.7) 

A graphical representation of (5.7) is given in figure 5. Hence it follows that in 
a supersonic flow between two plane para.lle1 walls, weak waves (c +- 0)  with 
small reduced frequencies (Q -+ 0) would propagate upstream without damping 
if viscosity were neglected; furthermore, there would be a countably infinite 
set of possible wavenumbers for any particular channel width. 

Taking small viscosity effect,s into account, however, changes the results 
drastically. Figure 6 shows the imaginary part of k(l) as given by (5.6). It can 
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.I 0 - 4 
k(0) 

FIGURE 5. The inviscid wavenumber k(O) as a function of the stretched channel half-width b,. 
Free-stream Mach number M, = 4 2 ,  free-stream-to-wall temperature ratio Tm = 1. 

FIGURE 6. The imaginyy part of the second-order wavenumber for weak viscosity effects 
(N + 0). Free-stream Mach number M, = 4 2 ,  free-stream-to-wall temperature ratio T, = 1.  

be seen that only one branch of one solution (n = 0) has the correct negative 
sign, leading t o  damping of upstream-propagating waves. The other solutions 
have to  be ruled out because positive imaginary parts of the wavenumber have 
been excluded in the course of the calculations. Moreover k(') becomes infinite 
at a certain value of k(O), say k t ) ,  indicating that the expansion (5.4) breaks down 
a,s k(O) -+ k:'. Going back now to figure 5 we note that in all solutions only the 
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N = n-2Re-l 

FIGURE 7. The damping exponent /3 for upstream-propagating waves near a single wdl. 
(a) As a function of the viscosity-frequency parameter N = !ik2Re-' and the free-stream 
Mach number M,. Free-stream temperature and wall temperature are equal, T, = 1. 
( b )  As a function of the viscosity-frequency parameter N = ik2Re-1 and the free-stream 
temperature T, (based on the wall temperature). Free-stream Mach number M, = 4 2 .  

solid part of the n = 0 curve is correct from the point of view of a limit N -+ 0. 
Since b0(k(O)) for n = 0 reaches its maximum value bo, exactly a t  k(O) = k? the 
expansion (5.4) and the results (5.7) and (5.6) that  follow from it are useful only 
for half-widths below the critical value b ,  = bo*/K. 

In  closing this section the following remark seems to bg appropriate. When 
we expanded the equations for sinall disturbances (E + 0) we did not take into 
account the far-field effects due to perturbations of the characteristics. This 
could be done by the method of strained co-ordinates, for example. Those far- 
field effects will certainly cause weak damping of the waves in the inviscid case 
( N  = 0) and may also be an essential source of damping for sufficiently small 
values of N .  Since has to be small, such extremely small values of N require 
extraordinarily large Reynolds numbers which appear to be beyond the regime 
which is of practical interest. 



FIGURE 

Upstream propagation in supersonic boundary layew 48 1 

8. The 

* 
4 
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damping 

3 '  

exponent /3 for a channel. (a) As a function of the vimosity- 
frequency parameter N = QL2Re-l and the channel half-width b (based on the boundary- 
layer thickness). M, = J2, T, = 1 (free-stream temperature and wall temperature equal). 
( b )  As a function of the wavelength h and the channel half-width. Values of the viwosity- 
frequency parameter are indicated as follows: 0, N = 0.01; a, N = 0.1; 0, N = 1; 
x , N = 10; 0. N = 100. (All lengths based on the boundary-layer thickness.) 

6. Numerical results 
As part of the preceding solutions, equations for Ic, the complex wavenumber 

with respect to the stretched co-ordinate X, have been obtained. For a laterally 
unbounded gas stream along a single plane wall, k has to satisfy (4.9); for a flow 
between two plane parallel walls (5.3) applies instead. Both equations have been 
solved numerically with various values of the parameters N ,  M,, T, and b,. 
The damping exponent ,8 and the wavelength h have then been computed from 
(4.3).Note that theshapesofthevelocityand temperature profiles in theboundary 
layer are left unspecified as they do not affect the results. Some result,s are 
presented in figures 7 and 8. Since under experimental conditions the reduced 
frequency C? is likely to be more easily varied than the Reynolds number Re, 
all quantities are now based on powers of Re rather than Q. 

31 F L M  63 
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For a single wall, the damping exponent p us. the viscosity-frequency para- 
meter N has been plotted in figure 7 ,  figure 7 ( a )  showing the influence of the 
free-stream Mach number M, and figure 7 ( b )  showing the effect of changing 
the ratio of the free-stream temperature and wall temperature. 

Results for the upstream propagation in a channel are presented in figure 8. 
Figure 8(a )  shows how the damping exponent depends on the viscosity- 
frequency parameter N and the channel half-width b. Figure 8 ( b )  is a plot of 
the wavenumbers in the complex plane, giving us the damping exponent as 
a function of the reciprocal of the wavelength. 

When the Reynolds number Re of the basic flow and the channel half-width b 
are kept constant, the damping exponent p is seen to increase with increasing 
reduced frequency a. As far as the influence of the channel width is concerned, 
there is a general trend of decreasing damping with decreasing channel width; 
in a certain range of iV and b,  however, the general trend is reversed, but quanti- 
tatively this inverse effect is quite small. 

I n  order to indicate how Lighthill's (1953) theory is incorporated in the present 
investigation i t  should be mentioned that Lighthill's theory provides the right- 
hand asymptote to the curve labelled b Re-& = 00 in our figure 8 (a). 

The author is grateful to Professor K. Oswatitsch for stimulating interest in 
the subject. The author has also benefited from several discussions with Dr mi. 
Koch and wishes to thank Mr L.Leopold for the computer programming. 
A referee's comment led to a more concise representation. 

Appendix. Matched asymptotic expansions for the quasi-steady layers 
Middle layer 

The asymptotic expansions are 

Using the relation K Re + 00 as Re + 00, which means that the wavelength of 
the disturbances is small relative to the spatial extent of the boundary layer in 
upstream direction, we obtain from (2.1)-(2.4) the following equations for the 
first-order perturbation quantities : 

aumlax + aUm/ay = 0, (a 2 )  

ZL aumlax + u"ul, = 0, (A 3) 

apmlay = 0, (A 4) 

u a p m p x + p ' v m  = 0. (A 5 )  
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The general solution of the system (A 2)-(A 5 )  is 

where the functions f, g, h and pm are to be determined from matching 
conditions. 

Outer layer 
Very far from the wall the flow field is described in terms of the outer co-ordinate 

where yo = O(1) as K --f 0. 
As y -+ co the basic boundary-layer profiles differ from the inviscid free stream 

only by exponentially small terms. Hence the first two terms of the outer ex- 
pansion can be written as 

Y o  = KY, (A 10) 

u = 1 + €KU0(X, yo, t )  + . . . , 

I ZJ = EKV0(X, yo, t )  + . . . , 
P = Pm + eKp,(X, yo, t )  + . . . , 
P = P m  + SKPO(X, Yo, t )  + 1 * * .) 

Here pm stands for ~ ( c o ) ,  i.e. the (dimensionless) free-stream density. 

and yo fixed we obtain the following system of perturbation equations: 
Expanding the governing equations (2.1)-(2.4) according to (A 11) with X 

1 ap, auo avo 
PwaX ax ay0 

+-+-.= 0, -- 

Equations (A 13) and (A 15) can be integrated at  once to yield, together with 
the condition that all disturbances vanish simultaneously at  infinity, the relations 

Po = - P W U O ,  Po = J e P 0 >  (A 16) 

where, owing to our dimensionless notation, pm/ypm has been replaced by the 
square of the free-stream Mach number .Mw. Upon introduction of a velocity 
potential $ according to 

the remaining equations (A 12) and (A 14) reduce to the single equation 

a#lax = u,, a#layo = V ,  

This wave equation has the general solution (3.9). 
31-2 
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Transition layer 
This layer is characterized by the condition 

which implies that p’(y) = O(K)  or even smaller. Since the velocity in the 
boundary layer differs from the free-stream velocity, as y+co, only by ex- 
ponentially small terms, the y co-ordinate in the transition layer as defined by 
(A 19) becomes logarithmically large as K + 0. The thickness of the layer, how- 
ever, remains O( l) .  Thus we introduce the normal co-ordinate ytr in the transition 
layer by the relation 

(A 20) Y = Y” +Ytr7 

where the (logarithmically large) reference distance y* characterizes the position 
of the transition layer. We may, for instance, define y* such that E’(y*) = K .  

Expanding (2.1) to (2.4) according to 

This system of equat,ions has the solution 

where the functions v,,, ptr, qkl and qk2 are to be determined from matching with 
the adjoining layers. 

Matching 
Applying one of the well-known matching rules (Van Dyke 1964) yields 
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Equations (3.6)-(3.8) follow from (A 6)-(A 8) and (A 30)-(A 32). 
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